Search results for "Animal model"

showing 10 items of 241 documents

Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment

2018

Standard of care for cancer is commonly a combination of surgery with radiotherapy or chemoradiotherapy. However, in some advanced cancer patients this approach might still remaininefficient and may cause many side effects, including severe complications and even death. Oncolytic viruses exhibit different anti-cancer mechanisms compared with conventional therapies, allowing the possibility for improved effect in cancer therapy. Chemotherapeutics combined with oncolytic viruses exhibit stronger cytotoxic responses and oncolysis. Here, we have investigated the systemic delivery of the oncolytic adenovirus and paclitaxel encapsulated in extracellular vesicles (EV) formulation that, in vitro, s…

0301 basic medicine3003Lung NeoplasmsCancer therapymedicine.medical_treatmentPharmaceutical ScienceOncolytic viruseschemistry.chemical_compoundpaclitaxelkeuhkosyöpä0302 clinical medicineMedicineMice Inbred BALB CExtracellular vesiclesCHEMOTHERAPYCombined Modality Therapy3. Good healthxenograft animal modelPaclitaxelLiver317 Pharmacy030220 oncology & carcinogenesisonkolyyttiset viruksetcancer therapyFemaleLung canceronkolyyttinen virushoitoOncolytic adenovirusEFFICIENCYPaclitaxelCancer therapy; Drug delivery; Extracellular vesicles; Lung cancer; Oncolytic viruses; Paclitaxel; Xenograft animal model; 30033122 CancersMice NudeXenograft animal modelta3111OVARIAN-CANCERVIROTHERAPY03 medical and health sciencesCell Line TumorAnimalsHumansVirotherapyLung cancerChemotherapyADENOVIRUS RECEPTORsyöpähoidotbusiness.industryta1182CancerENDOSTATINmedicine.diseaseta3122Antineoplastic Agents PhytogenicGENEOncolytic virusMODELlung cancer030104 developmental biologychemistryviroterapiaDrug deliveryCELLSdrug deliveryCancer researchbusinessOvarian cancersolunulkoiset vesikkelitSpleen
researchProduct

Postnatal Antioxidant and Anti-inflammatory Treatments Prevent Early Ketamine-Induced Cortical Dysfunctions in Adult Mice

2020

Early brain insult, interfering with its maturation, may result in psychotic-like disturbances in adult life. Redox dysfunctions and neuroinflammation contribute to long-term psychiatric consequences due to neurodevelopmental abnormalities. Here, we investigated the effects of early pharmacological modulation of the redox and inflammatory states, through celastrol, and indomethacin administration, on reactive oxygen species (ROS) amount, levels of malondialdehyde (MDA) and antioxidant enzymes (superoxide dismutase 1, SOD1, glutathione, GSH, and catalase, CAT), as well as of pro-inflammatory cytokines (tumor necrosis factor-alpha, TNF-α, interleukin-6, IL-6, and interleukin-1 beta, IL-1β), i…

0301 basic medicineAntioxidantketaminemedicine.medical_treatmentPharmacologylcsh:RC321-571Superoxide dismutaseLipid peroxidation03 medical and health scienceschemistry.chemical_compound0302 clinical medicineindomethacinmedicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatrycelastrolNeuroinflammationOriginal Researchchemistry.chemical_classificationprefrontal cortexReactive oxygen speciesbiologybusiness.industryGeneral NeuroscienceGlutathioneMalondialdehydeanimal models030104 developmental biologychemistryinflammationCelastrolredoxbiology.proteinbusiness030217 neurology & neurosurgeryNeuroscienceFrontiers in Neuroscience
researchProduct

Effect of chronic exercise on myocardial electrophysiological heterogeneity and stability. Role of intrinsic cholinergic neurons: A study in the isol…

2018

[EN] A study has been made of the effect of chronic exercise on myocardial electrophysiological heterogeneity and stability, as well as of the role of cholinergic neurons in these changes. Determinations in hearts from untrained and trained rabbits on a treadmill were performed. The hearts were isolated and perfused. A pacing electrode and a recording multielectrode were located in the left ventricle. The parameters determined during induced VF, before and after atropine (1 mu M), were: fibrillatory cycle length (VV), ventricular functional refractory period (FRPVF), normalized energy (NE) of the fibrillatory signal and its coefficient of variation (CV), and electrical ventricular activatio…

0301 basic medicineAtropineMaleRefractory Period ElectrophysiologicalRefractory periodPhysiology030204 cardiovascular system & hematologyBiochemistryRunningTissue Culture Techniques0302 clinical medicineAnimal CellsMuscarinic acetylcholine receptorMedicine and Health SciencesMedicinePublic and Occupational HealthTreadmillMammalsNeuronsMultidisciplinaryQREukaryotaHeartNeurochemistryNeurotransmittersAnimal ModelsSports ScienceCardiovascular physiologyElectrophysiologyAtropineChemistrymedicine.anatomical_structureExperimental Organism SystemsVentricular FibrillationPhysical SciencesVertebratesCardiologyLeporidsMedicineRabbitsCellular TypesAnatomyArrhythmiamedicine.drugResearch Articlemedicine.medical_specialtyScienceCholinergicsCardiologyMuscarinic AntagonistsResearch and Analysis MethodsTECNOLOGIA ELECTRONICA03 medical and health sciencesAlkaloidsInternal medicineAnimalsCholinergic neuronSports and Exercise MedicineExercisebusiness.industryChemical CompoundsOrganismsParasympatholyticsBiology and Life SciencesCell BiologyPhysical ActivityElectrophysiology030104 developmental biologyVentriclePhysical FitnessCellular NeuroscienceAmniotesAnimal StudiesCardiovascular AnatomybusinessNeuroscience
researchProduct

The hallmarks of ovarian cancer: proliferation and cell growth

2020

Epithelial ovarian cancer (EOC) is a heterogeneous group of diseases with distinct biological and clinical behaviour. Despite the differences between them, the capability of tumour cells to continuously proliferate and avoid death is maintained among histotypes. This ability is the result of alterations at different levels, causing the deregulation of cell cycle and proliferative-related pathways. Even if the leading role is played by RB and TP53, changes in other molecular pathways are involved in the development of EOC. This ability can be exploited to generate in vitro and in vivo models resembling the conditions of tumour development in a patient. In vivo models, such as patient-derived…

0301 basic medicineCancer Researchendocrine system diseaseslcsh:MedicineBiologylcsh:RC254-282Article03 medical and health sciencesCell growth0302 clinical medicinemedicineEpithelial ovarian cancerCell proliferationHeterogeneous groupCell growthlcsh:RCell cycleEpithelial ovarian cancerlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseAnimal models030104 developmental biologyOncologyTumour development030220 oncology & carcinogenesisGenetically Engineered MouseCancer researchOvarian cancerEJC Supplements
researchProduct

RBFOX1, encoding a splicing regulator, is a candidate gene for aggressive behavior

2020

The RBFOX1 gene (or A2BP1) encodes a splicing factor important for neuronal development that has been related to autism spectrum disorder and other neurodevelopmental phenotypes. Evidence from complementary sources suggests that this gene contributes to aggressive behavior. Suggestive associations with RBFOX1 have been identified in genome-wide association studies (GWAS) of anger, conduct disorder, and aggressive behavior. Nominal association signals in RBFOX1 were also found in an epigenome-wide association study (EWAS) of aggressive behavior. Also, variants in this gene affect temporal lobe volume, a brain area that is altered in several aggression-related phenotypes. In animals, this gen…

0301 basic medicineCandidate geneNeuroimagingRBFOX1Genome-wide association studyBiologyEpigenesis GeneticA2BP103 medical and health sciencesAll institutes and research themes of the Radboud University Medical Center0302 clinical medicineGeneticsmedicineAnimalsHumansPharmacology (medical)TranscriptomicsRBFOX1Genetic Association StudiesBiological PsychiatryRegulator genePharmacologyGeneticsNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]AggressionGenetic Variationmedicine.diseasePhenotypeAnimal modelsAggressionPsychiatry and Mental health030104 developmental biologyNeurologyAutism spectrum disorderEpigeneticsRBFOX1 GeneRNA Splicing FactorsNeurology (clinical)medicine.symptom030217 neurology & neurosurgeryGenome-Wide Association Study
researchProduct

Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Dro…

2016

During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to i…

0301 basic medicineCentral Nervous SystemCancer ResearchEmbryologyGene ExpressionNervous SystemNeural Stem CellsAnimal CellsMedicine and Health SciencesDrosophila ProteinsHox geneGenetics (clinical)Regulation of gene expressionGeneticsNeuronsMembrane GlycoproteinsDrosophila MelanogasterGene Expression Regulation DevelopmentalAnimal ModelsProtein-Tyrosine KinasesNeural stem cellCell biologyInsectsPhenotypesembryonic structuresDrosophilaDrosophila melanogasterAnatomyCellular Structures and OrganellesCellular TypesResearch Articleanimal structuresArthropodalcsh:QH426-470ImmunoglobulinsBiologyAntennapediaResearch and Analysis Methods03 medical and health sciencesModel OrganismsNeuroblastNuclear BodiesCyclin EGeneticsAnimalsGene RegulationCell LineageMolecular BiologyEcology Evolution Behavior and SystematicsLoss functionCell NucleusHomeodomain ProteinsNeuroectodermEmbryosOrganismsBiology and Life SciencesCell Biologybiology.organism_classificationInvertebrateslcsh:Genetics030104 developmental biologyCellular NeuroscienceDevelopmental BiologyNeurosciencePLoS Genetics
researchProduct

The Role of Iron in Friedreich's Ataxia: Insights From Studies in Human Tissues and Cellular and Animal Models.

2019

Friedreich’s ataxia (FRDA) is a rare early-onset degenerative disease that affects both the central and peripheral nervous systems, and other extraneural tissues, mainly the heart and endocrine pancreas. This disorder progresses as a mixed sensory and cerebellar ataxia, primarily disturbing the proprioceptive pathways in the spinal cord, peripheral nerves and nuclei of the cerebellum. FRDA is an inherited disease with an autosomal recessive pattern caused by an insufficient amount of the nuclear-encoded mitochondrial protein frataxin, which is an essential and highly evolutionary conserved protein whose deficit results in iron metabolism dysregulation and mitochondrial dysfunction. The firs…

0301 basic medicineCerebellumAtaxiaFriedreich’s ataxiaReviewMitochondrionmedicine.disease_causelcsh:RC321-57103 medical and health sciencesiron0302 clinical medicineDegenerative diseasemedicineoxidative stresslcsh:Neurosciences. Biological psychiatry. Neuropsychiatrychemistry.chemical_classificationReactive oxygen speciesfrataxinbiologyCerebellar ataxialipid deregulationGeneral Neurosciencemedicine.diseaseanimal modelsCell biology030104 developmental biologymedicine.anatomical_structurechemistryFrataxinbiology.proteiniron chelatorsmedicine.symptom030217 neurology & neurosurgeryOxidative stressNeuroscienceFrontiers in neuroscience
researchProduct

Analysis of Microstructure of the Cardiac Conduction System Based on Three-Dimensional Confocal Microscopy

2016

The specialised conducting tissues present in the ventricles are responsible for the fast distribution of the electrical impulse from the atrio-ventricular node to regions in the subendocardial myocardium. Characterisation of anatomical features of the specialised conducting tissues in the ventricles is highly challenging, in particular its most distal section, which is connected to the working myocardium via Purkinje-myocardial junctions. The goal of this work is to characterise the architecture of the distal section of the Purkinje network by differentiating Purkinje cells from surrounding tissue, performing a segmentation of Purkinje fibres at cellular scale, and mathematically describin…

0301 basic medicineConfocal Microscopylcsh:Medicine030204 cardiovascular system & hematologylaw.inventionPurkinje Cells0302 clinical medicineAnimal CellslawMedicine and Health SciencesMyocyteSegmentationlcsh:ScienceMammalsMicroscopyMicroscopy ConfocalMultidisciplinaryLight MicroscopyHeartAnimal ModelsAnatomyVertebratesRabbitsCellular TypesAnatomyElectrical conduction system of the heartNetwork AnalysisResearch ArticleComputer and Information SciencesCell typeCardiac VentriclesHeart VentriclesMuscle TissueBiologyResearch and Analysis MethodsImaging data03 medical and health sciencesImaging Three-DimensionalModel OrganismsHeart Conduction SystemConfocal microscopyAnimalsComplex network analysisMuscle CellsMyocardiumlcsh:ROrganismsBiology and Life SciencesCell BiologyWheat germ agglutininBiological Tissue030104 developmental biologyAmniotesCardiovascular Anatomylcsh:QEndocardiumBiomedical engineeringPLOS ONE
researchProduct

GW-Bodies and P-Bodies Constitute Two Separate Pools of Sequestered Non-Translating RNAs

2015

Non-translating RNAs that have undergone active translational repression are culled from the cytoplasm into P-bodies for decapping-dependent decay or for sequestration. Organisms that use microRNA-mediated RNA silencing have an additional pathway to remove RNAs from active translation. Consequently, proteins that govern microRNA-mediated silencing, such as GW182/Gw and AGO1, are often associated with the P-bodies of higher eukaryotic organisms. Due to the presence of Gw, these structures have been referred to as GW-bodies. However, several reports have indicated that GW-bodies have different dynamics to P-bodies. Here, we use live imaging to examine GW-body and P-body dynamics in the early …

0301 basic medicineCytoplasmEmbryologyTranscription GeneticMolecular biologylcsh:MedicineGene ExpressionRNA-binding proteinsRNA-binding proteinBiochemistryBlastulas0302 clinical medicineRNA interferenceDrosophila ProteinsCell Cycle and Cell DivisionSmall nucleolar RNAlcsh:ScienceRNA structureGeneticsMultidisciplinaryDrosophila MelanogasterAnimal ModelsArgonauteLong non-coding RNACell biologyInsectsNucleic acidsRNA silencingCell ProcessesArgonaute ProteinsRNA InterferenceRNA Long NoncodingDrosophilaCellular Structures and OrganellesResearch ArticleArthropodaBiologyResearch and Analysis Methods03 medical and health sciencesModel OrganismsP-bodiesGeneticsAnimalsBlastodermlcsh:REmbryosOrganismsBiology and Life SciencesProteinsRNACell BiologyInvertebratesMicroRNAsMacromolecular structure analysis030104 developmental biologyProtein BiosynthesisRNAlcsh:QProtein Translation030217 neurology & neurosurgeryDevelopmental BiologyPLOS ONE
researchProduct

An Intronic cis-Regulatory Element Is Crucial for the Alpha Tubulin Pl-Tuba1a Gene Activation in the Ciliary Band and Animal Pole Neurogenic Domains …

2017

In sea urchin development, structures derived from neurogenic territory control the swimming and feeding responses of the pluteus as well as the process of metamorphosis. We have previously isolated an alpha tubulin family member of Paracentrotus lividus (Pl-Tuba1a, formerly known as Pl-Talpha2) that is specifically expressed in the ciliary band and animal pole neurogenic domains of the sea urchin embryo. In order to identify cis-regulatory elements controlling its spatio-temporal expression, we conducted gene transfer experiments, transgene deletions and site specific mutagenesis. Thus, a genomic region of about 2.6 Kb of Pl-Tuba1a, containing four Interspecifically Conserved Regions (ICRs…

0301 basic medicineEmbryologyPolarity in embryogenesislcsh:MedicineGene ExpressionMedicine (all); Biochemistry Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)medicine.disease_causeBiochemistryTubulinGene expressionElectron MicroscopyTransgeneslcsh:SciencePromoter Regions GeneticSea urchinConserved SequenceSequence DeletionGeneticsRegulation of gene expressionMicroscopyMutationMultidisciplinaryMedicine (all)Gene Expression Regulation DevelopmentalGenomicsAnimal ModelsTATA BoxEnzymesEnhancer Elements GeneticExperimental Organism Systemsembryonic structuresParacentrotusTranscription Initiation SiteOxidoreductasesLuciferaseResearch ArticleEchinodermsTranscriptional ActivationImaging TechniquesNeurogenesisGreen Fluorescent ProteinsEmbryonic DevelopmentSettore BIO/11 - Biologia MolecolareBiologyResearch and Analysis MethodsGenome ComplexityParacentrotus lividus03 medical and health sciencesSpecies SpecificityTubulinsbiology.animalFluorescence ImagingGeneticsmedicineConsensus sequenceAnimalsCiliaEnhancerBiochemistry Genetics and Molecular Biology (all)Binding SitesModels Geneticlcsh:REmbryosOrganismsBiology and Life SciencesComputational BiologyProteinsbiology.organism_classificationInvertebratesIntronsCytoskeletal Proteins030104 developmental biologyAgricultural and Biological Sciences (all)Bright Field ImagingSea UrchinsEnzymologyMutagenesis Site-Directedlcsh:QTransmission Electron MicroscopyDevelopmental BiologyTranscription FactorsPLOS ONE
researchProduct